
SYNTHESIS OF 3'-DEOXYKANAMYCIN B

Sir:

We have previously reported the synthesis of 3', 4'-dideoxy derivatives of neamine¹⁾, kanamycin B²⁾ and ribostamycin³⁾, which were active against kanamycin-resistant bacteria. Another theoretically interesting group of compounds in view of the resistance mechanism⁴⁾ is 3'-deoxy derivatives. As an example of this group, we synthesized 3'-deoxykanamycin A.⁵⁾ By selective 3'-dehydroxylation of kanamycin B, we have succeeded in yielding 3'-deoxykanamycin B, which is synonymous with tobramycin⁶⁾, a *Streptomyces* product. Since kanamycin B has already been synthesized¹¹⁾, this synthesis constitutes the total synthesis of tobramycin.

Penta-N-ethoxycarbonylkanamycin B^{2}) was treated with cyclohexanone dimethylketal in DMF in the presence of *p*-toluenesulfonic acid at 50°C under reduced pressure ($25 \sim 30$ Torr) to give the 3', 4'; 4", 6"-di-O-cyclohexylidene derivative (1), mp 213~215°C, $[\alpha]_{D}^{20}$ +99° (c 1, methanol). [Calcd. for $C_{45}H_{73}N_5O_{20}$: C 53.83, H 7.33, N 6.98; Found: C 53.50, H 7.32, N 6.77]. Benzoylation of 1 with benzoyl chloride in pyridine gave the 2"-O-benzoyl derivative (2) quantitatively, mp 152~154°C, $[\alpha]_{D}^{20}$ +99° (c 1.4, methanol). [Calcd. for $C_{52}H_{77}N_5O_{21}$: C 56.36, H 7.00, N 6.32; Found: C 56.46, H 6.76, N 6.07]. Selective removal of the cyclohexylidene group at C-3' and 4' was effected by treatment with acidic methanol at 25°C and the 2"-O-benzoyl-4", 6"-O-cyclohexylidene derivative (3) was obtained in a yield of 80 %, mp 233 \sim 235°C, $[\alpha]_{D}^{20}$ +147° (c 0.56, DMF). [Calcd. for $C_{46}H_{69}N_5O_{21}$: C 53.74, H 6.76, N 6.81; Found: C 53.49, H 6.41, N 6.69].

Treatment of 3 (1 mol equivalent) with ptoluenesulfonyl chloride (5 mol equivalents) in pyridine at 25°C overnight gave the 3'-O-tosyl derivative as the major product and 4'-O-tosyl and 3', 4'-di-O-tosyl derivatives as minor ones.

Test organisms*	Minimal inhibitory concentration (mcg/ml)			
	7	Tobramycin	DKB	KMB
Staphylococcus aureus FDA 209P	<0.2	<0.2	<0.2	0.39
Sarcina lutea PCI 1001	12.5	25	6.25	1.56
Bacillus subtilis NRRL B-558	<0.2	<0.2	<0.2	<0.2
Klebsiella pneumoniae PCI 602	0.39	0.2	0.39	0.78
<i>"</i> type 22 #3038	50	50	100	>100
Salmonella typhosa T-63	0.39	<0.2	<0.2	0.2
Escherichia coli NIHJ	0.78	0.39	0.39	0.78
″ K-12	0.39	0.39	0.78	0.78
" " R-5	1.56	3.12	3.12	3.12
" " ML 1629	1.56	0.78	0.78	>100
" " ML 1630	1.56	1.56	0.78	>100
" " ML 1410	1.56	0.78	1.56	0.78
" " R 81	1.56	3.12	1.56	>100
" " LA 290 R 55	25	50	50	12.5
<i>""</i> R 56	3.12	3.12	12.5	3.12
<i>""</i> R 64	3.12	3.12	6.25	3.12
" " W 677	0.39	0.39	0.2	0.39
" JR 66/W 677	50	50	50	>100
Pseudomonas aeruginosa A 3	1.56	0.78	1.56	50
" No. 12	0.78	0.78	0.78	12.5
" GN 315	100	>100	>100	>100
″ TI-13	0.78	0.78	1.56	100
<i>"</i> 99	1.56	3.12	3.12	>100
Proteus rettgeri GN 311	6.25	3.12	3.12	3.12
" GN 466	3.12	1.56	0.78	3.12
Mycobacterium smegmatis ATCC 607**	0.39	0.2	0.39	0.78

Table 1. Antibacterial spectra of 7, tobramycin, DKB and KMB

* Agar dilution streak method (nutrient agar, 37°C, 18 hours).

** 48 hours.

The selective 3'-O-tosylation may be ascribed to the presence of the electron-withdrawing ethoxycarbonylamino group at C-2' which makes the 3'-hydroxyl group more anionic than the 4'-hydroxyl in the basic medium. The bulky 3'-O-tosyl group is suggested to hinder subsequent 4'-O-tosylation. In contrast to the tosylation, 3', 4'-di-O-mesylation was easily performed²⁾. Successive isolation and purification gave the 3'-O-tosyl derivative (4) in a yield of 60 %, mp 149~150°C, $[\alpha]_D^{20}+88^\circ$ (c 1, methanol). NMR (in CDCl₃): τ 7.58 (3H s, CH₃C₆H₄SO₂-). [Calcd. for C₅₃H₇₅N₅O₂₃S: C 53.84, H 6.40, N 5.93, S 2.71; Found: C 53.90, H 6.58, N 5.67, S 3.00].

Iodination of 4 with excess sodium iodide (4.9 g NaI in 10 ml DMF) in DMF at 100°C for 20 hours gave the 3'-iodo derivative (5) in a

yield of 70%. [Calcd. for $C_{46}H_{68}N_5O_{20}I$: C 48.55, H 6.02, N 6.15, I 11.15; Found: C 48.75, H 6.09, N 6.57, I 11.45]. The iodo derivative was unstable, however the immediate hydrogenation with RANEY nickel and hydrogen in dioxane gave the 3'-deoxy derivative (6) in a yield of 96%, mp 248.5~250°C, $[\alpha]_{D}^{20}+86^{\circ}$ (*c* 0.76, methanol). [Calcd. for $C_{46}H_{69}N_5O_{20}$: C 54.59, H 6.87, N 6.92; Found: C 54.58, H 6.80, N 6.84].

Compound 6 was successively treated with hot $4 \times barium$ hydroxide to remove the ethoxycarbonyl and benzoyl groups and with 50 % acetic acid at 80°C to remove the cyclohexylidene group to give the deblocked product, which was purified by chromatography on CM-Sephadex C-25 (NH₄⁺) with 0~0.15 × ammonia. 3'-Deoxykanamycin B (7) was obtained as a monohydrate, $[\alpha]_{D}^{20}+129^{\circ}$ (c 1, water) (lit⁶⁾+ 128°). Rf_{kanamycin B} 1.25 (paper chromatography with 1-butanol-pyridine-water-acetic acid (6:4:3:1)). NMR (in D₂O): τ 7.7~8.9 (4 H m, H-2 and 3'); The whole pattern was different from that of kanamycin B and 3', 4'-dideoxykanamycin B. [Calcd. for C₁₈H₃₇N₅O₉·H₂O: C 44.53, H 8.10, N 14.43; Found: C 44.92, H 8.09, N 14.61].

The structure of 7 was confirmed by its Δ [M]_{436(TACu)}⁷⁾ value determination and by acidic hydrolysis. Δ [M]_{436(TACu)} values of 7, tobramycin, kanamycin (KM), kanamycin B (KMB) and 3', 4'-dideoxykanamycin B (DKB) were +950°, +900°, +850°, -450° and +800°, respectively.

Kanamycin, tobramycin and 3', 4'-dideoxykanamycin B are expected to give similar Δ [M]_{436(TACu)} values, because the 6-O-glycosyldeoxystreptamine portions are common and the 4-O-glycosyl-deoxystreptamine portions are expected to give no contribution* to the values. Only kanamycin B should be differentiated owing to copper complex formation at the 2'amino and 3'-hydroxyl groups. Acidic hydrolysis of KMB, DKB, 7 and tobramycin with 6 N hydrochloric acid at 100°C for 2 hours followed by paper-chromatographic examination with 1-butanol-pyridine-water-acetic acid (6:4:3:1) gave 2-deoxystreptamine and 3amino-3-deoxyglucose ($Rf_{2-deoxystreptamine}$ 2.7) as common products and the third products having $Rf_{2-deoxystreptamine}$ 1.3, 1.8, 1.5 and 1.5, respectively. The last two were identical to 2, 6-diamino-2, 3, 6-tri-deoxy-D-ribo-hexose.

The synthetic 3'-deoxykanamycin B showed antibacterial activity (Table 1) as strong as that of parent antibiotic, kanamycin B, and moreover showed activity against a variety of resistant bacteria. It showed strong activity against *Pseudomonas* similar to 3', 4'-dideoxykanamycin B and was more active than 3'deoxykanamycin¹⁾, 3', 4'-dideoxyribostamycin³⁾, butirosin $B^{(0)}$, 3', 4'-dideoxybutirosin $B^{(0)}$ and BB-K 8^{10} .

Acknowledgement

We are grateful to Prof. S. MITSUHASHI, Gumma University, for the kind supply of tobramycin.

Yasushi Takagi Toshiaki Miyake Tsutomu Tsuchiya Sumio Umezawa

Department of Applied Chemistry, Faculty of Engineering, Keio University, Hiyoshi, Yokohama, Japan

Hamao Umezawa

Institute of Microbial Chemistry, Kamiosaki, Shinagawaku, Tokyo, Japan (Received April 16, 1973)

References

- UMEZAWA, S.; T. TSUCHIYA, T. JIKIHARA & H. UMEZAWA: Synthesis of 3', 4'-dideoxyneamine active against kanamycin-resistant E. coli and P. aeruginosa. J. Antibiotics 24: 711~ 712, 1971
- UMEZAWA, H.; S. UMEZAWA, T. TSUCHIYA & Y. OKAZAKI: 3', 4'-Dideoxykanamycin B active against kanamycin-resistant *Escherichia* coli and *Pseudomonas aeruginosa*. J. Antibiotics 24: 485~487, 1971; Synthesis of 3', 4'-dideoxykanamycin B. Bull. Chem. Soc. Japan 45: 3624 ~3628, 1972
- UMEZAWA, S.; T. TSUCHIYA, D. IKEDA & H. UMEZAWA: Syntheses of 3', 4'-dideoxy and 3', 4', 5''-trideoxyribostamycin active against kanamycin-resistant E. coli and P. aeruginosa. J. Antibiotics 25: 613~616, 1972
- 4) UMEZAWA, H.: Mechanism of inactivation of aminoglycosidic antibiotics by enzymes of resistant organisms of clinical origin. Progress in Antimicrobial and Anticancer Chemotherapy. Vol. 2: pp. 567~571, 1970, University of Tokyo Press. Related references are cited therein.
- 5) UMEZAWA, S.; T. TSUCHIYA, R. MUTO, Y. NISHIMURA & H. UMEZAWA: Synthesis of 3'deoxykanamycin effective against kanamycinresistant *Escherichia coli* and *Pseudomonas aeruginosa*. J. Antibiotics 24: 274~275, 1971; UMEZAWA, S.; Y. NISHIMURA, H. HINENO, K. WATANABE, S. KOIKE, T. TSUCHIYA & H. UMEZAWA: The synthesis of 3'-deoxykanamycin. Bull. Chem. Soc. Japan 45: 2847~2851,

^{*} TACu forms complex with vicinal amino and hydroxyl groups when they have ~60° dihedral angle, showing approximately Δ [M]±900°7, but with two hydroxyl groups, no complexing occurs. For complicated substances such as kanamycin, however, Δ [M] values often deviate from the anticipated values calculated by the above method. This will be described elsewhere. In this report we compared the Δ [M] values only among structurally similar substances.

THE JOURNAL OF ANTIBIOTICS

1972

- KOCH, K.F. & J.A. RHOADES: Structure of nebramycin factor 6, a new aminoglycosidic antibiotic. Antimicr. Agents & Chemoth-1970: 309~313, 1971
- 7) UMEZAWA, S.; T. TSUCHIYA & K. TATSUTA: Studies of aminosugars. XI. Configurational studies of aminosugar glycosides and aminocyclitols by a copper complex method. Bull. Chem. Soc. Japan 39: 1235~1243, 1966
- IKEDA, D.; T. TSUCHIYA, S. UMEZAWA & H. UMEZAWA: Synthesis of butirosin B. J. Antibiotics 25: 741~742, 1972
- 9) IKEDA, D.; T. TSUCHIYA, S. UMEZAWA, H. UMEZAWA & M. HAMADA: Synthesis of 3', 4'-dideoxybutirosin B. J. Antibiotics 26: 307~ 309, 1973
- KAWAGUCHI, H.; T. NAITO, S. NAKAGAWA & K. FUJISAWA; BB-K8, a new semisynthetic aminoglycoside antibiotic. J. Antibiotics 25: 695~708, 1972
- UMEZAWA, S.; S. KOTO, K. TATSUTA, H. HINENO, Y. NISHIMURA & T. TSUMURA: The total synthesis of kanamycin B. Bull. Chem. Soc. Japan 42: 537~541, 1972

406